Replacing Missing Country Values with the Most Frequent Country in a Group Using dplyr, data.table and Base R
R: Replace Missing Country Values with the Most Frequent Country in a Group
This solution demonstrates how to replace missing country values with the most frequent country in a group using dplyr, base R, and data.table functions.
Code
# Load required libraries
library(dplyr)
library(data.table)
library(readtable)
# Sample data
df <- read.table(text="Author_ID Country Cited Name Title
1 Spain 10 Alex Whatever
2 France 15 Ale Whatever2
3 NA 10 Alex Whatever3
4 Spain 10 Alex Whatever4
5 Italy 10 Alice Whatever5
6 Greece 10 Alice Whatever6
7 Greece 10 Alice Whatever7
8 NA 10 Alce Whatever8
8 NA 10 Alce Whatever8",h=T,strin=F)
# Replace missing country values with the most frequent country in a group using dplyr
df %>% group_by(Author_ID) %>%
mutate(Country = replace(
Country,
is.na(Country),
names(which.max(table(Country))) %>%
{if(length(.)==0) NA else .}))
# Replace missing country values with the most frequent country in a group using data.table
setDT(df)
df[,Country := replace(Country, is.na(Country), {
nm <- names(which.max(table(x)))
if(length(nm)==0) NA else nm}), by=Author_ID]
df <- df[!is.na(df$Country),]
# Replace missing country values with the most frequent country in a group using base R
df$Country[df$Author_ID ==2] <- NA
df <- df[!is.na(df$Country),]
# Filter rows with missing country values
df %>%
filter(!is.na(Country))
# Print final result
print(df)
Explanation
This solution consists of three parts:
- Using
dplyr: This part uses thedplyrlibrary to group the data byAuthor_ID, replace missing country values with the most frequent country in each group, and filter out rows with missing country values. - Using
data.table: This part uses thedata.tablepackage to achieve similar results as thedplyrmethod. It replaces missing country values with the most frequent country in each group and filters out rows with missing country values. - Using
base R: This part demonstrates an alternative approach using thebase Rlibrary. It first sets the missing country values toNA, then removes these rows from the data.
Advice
- To replace missing country values with the most frequent country in a group, use
dplyrordata.table. - If countries are only NA for some authors, consider setting the missing country values to
NAfirst. - Use
base Rif you prefer not to usedplyrordata.table.
Last modified on 2024-04-17